

ADVISOR: Jia-Ling Koh PRESENTER: Xiao-Yuan Hung

SOURCE: ACL' 22 DATE: 2023/05/09

Outline

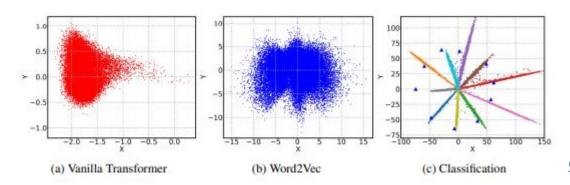
Introduction

- Problem
- Solution

- 2 Method
- Experiment
- 4 Conclusion

Problem

- Pre-trained embeddings are anisotropy(各向異性)
 - o word embeddings occupy a narrow cone in the vector space

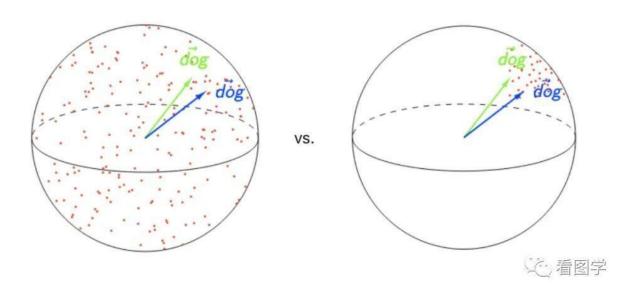


Gao et al. 2019

Problem

Methods

- BERT-Flow
- BERT-Whitening



isotropic

Anisotropic

Solution

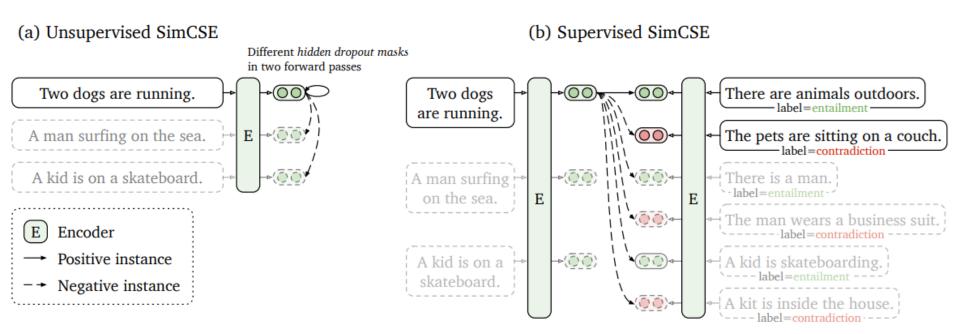
- Pre-trained embedding + Contrastive Learning
- Unsupervised
 - Uses standard dropout as data augmention
- Supervised
 - uses entailment + contradiction pairs from NLI datasets

Outline

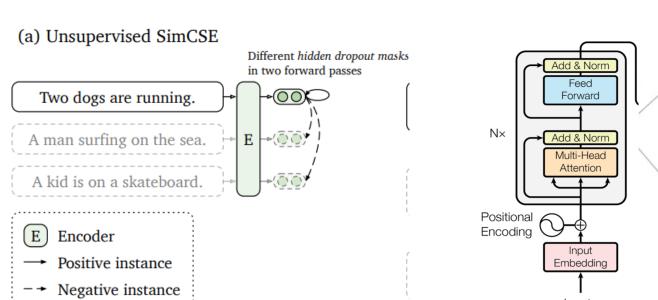
- Introduction
- 2 Method
- Experiment
- 4 Conclusion

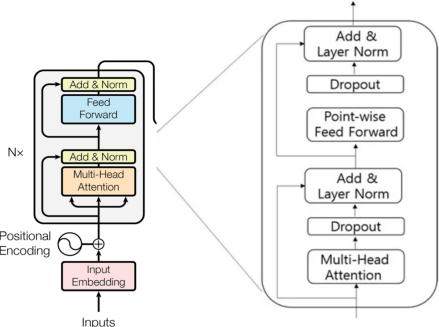
- Unspervised SimCSE
 - method
 - Experiment
- Supervised SimCSE
 - method
 - Experiment

SimCSE

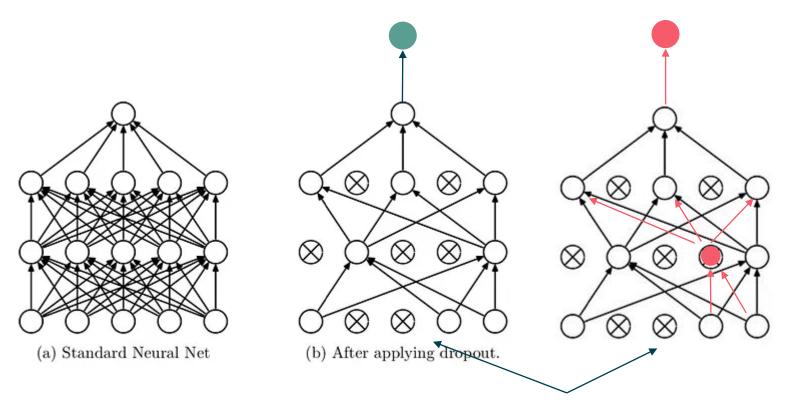


Unsupervised: BERT Dropout





Dropout



Two dogs are running.

Loss function

$$\ell_i = -\log \frac{e^{\sin(\mathbf{h}_i^{z_i}, \mathbf{h}_i^{z_i'})/\tau}}{\sum_{j=1}^N e^{\sin(\mathbf{h}_i^{z_i}, \mathbf{h}_j^{z_j'})/\tau}}, \text{ $$^{--}$ postive sample}$$

Comparison of data augmentations

- STS-B development set
- Spearman's correlation

	Different dropout
 SimCSE (dropout) 	NLP is interesting. —— NLP is interesting.
Compare it to	
Next sentence	I do NLP. —— NLP is interesting.
Synonym replacement	The movie is great. —— The movie is fantastic.
• Crop	Two dogs are running. —— Two dogs are running.
Delete one word	Two dogs are running. —— Two dogs are running.

examples of data augmentation

Data augmentation			STS-B
None (unsup. SimCSE)			82.5
Crop	10%	20%	30%
	77.8	71.4	63.6
Word deletion	10%	20%	30%
	75.9	72.2	68.2
Delete one word			75.9
w/o dropout			74.2
Synonym replacement			77.4
MLM 15%			62.2

STS-B development set example

sentence1 (string)	sentence2 (string)	similarity_score (float32)
"A man with a hard hat is dancing."	"A man wearing a hard hat is dancing."	5
"A young child is riding a horse."	"A child is riding a horse."	4.75
"A man is feeding a mouse to a snake."	"The man is feeding a mouse to the snake."	5
"A woman is playing the guitar."	"A man is playing guitar."	2.4
"A woman is playing the flute."	"A man is playing a flute."	2.75
"A woman is cutting an onion."	"A man is cutting onions."	2.615
"A man is erasing a chalk board."	"The man is erasing the chalk board."	5
"A woman is carrying a boy."	"A woman is carrying her baby."	2.333
"Three men are playing guitars."	"Three men are on stage playing guitars."	3.75
"A woman peels a potato."	"A woman is peeling a potato."	5

Spearman's rank correlation coefficient

X _{i (STS-B)}	Y _{i(data augmentations)}
5	4.75
4.75	3.5
1.25	1.5
3.15	3.75
2.45	1

Spearman's rank correlation coefficient

X _{i (STS-B)}	Y _i (data augmentations)	X _{i (rank)}	y _{i (rank)}	d _i	d _i ²
1.25	1.5	1	2	-1	1
2.45	1	2	1	1	1
3.15	3.75	3	4	-1	1
4.75	3.5	4	3	1	1
5	4.75	5	5	0	0

$$r = 1 - \frac{6\sum_{i=1}^{n} d_i^2}{n(n^2 - 1)} = 1 - \frac{6*4}{5*(5^2 - 1)} = 0.8$$

Comparison of different unsupervised objectives

SimCSE objectives

self-prediction

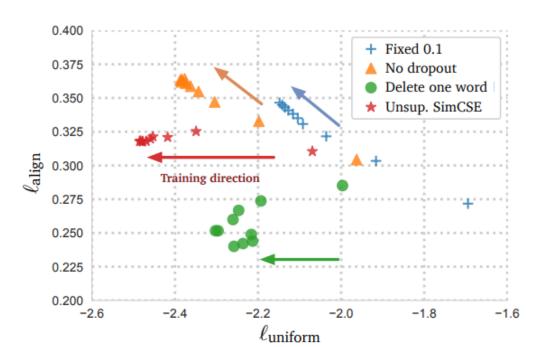
Training objective	$f_{ heta}$	$(f_{ heta_1},f_{ heta_2})$
Next sentence	67.1	68.9
Next 3 sentences	67.4	68.8
Delete one word	75.9	73.1
Unsupervised SimCSE	82.5	80.7

Effects of different dropout probabilities

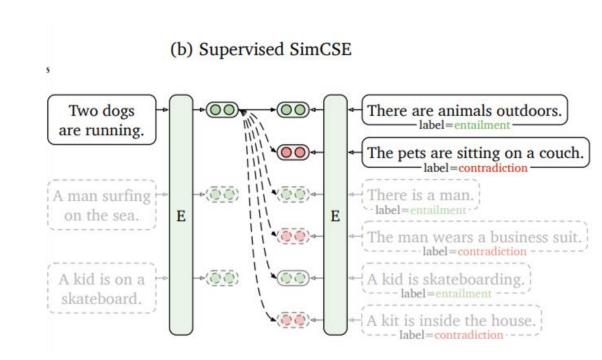
p STS-B	<i>0.0</i> 71.1		0.05 81.1	0.1 82.5
p STS-B		0.2 80.5		Fixed 0.1 43.6

lalign-luniform plot(unsupervised SimCSE)

- All models improve uniformity
- Unsupervised SimCSE keeps a steady alignment



Supervised: NLI dataset



Choices of labeled data

1. QQP(Quora question pairs)

2. Flickr30k

- a. each image is annotated with 5 human-written captions
- b. consider any two captions of the same image as a positive pair

3. ParaNMT

a. a large-scale back-translation paraphrase dataset

4. NLI: SNLI + MNLI

Dataset	sample	full
Unsup. SimCSE (1m)	-	82.5
QQP (134k)	81.8	81.8
Flickr30k (318k)	81.5	81.4
ParaNMT (5m)	79.7	78.7
SNLI+MNLI		
entailment (314k)	84.1	84.9
neutral (314k) ⁸	82.6	82.9
contradiction (314k)	77.5	77.6
all (942k)	81.7	81.9

447	895	896	What are natural numbers?	Wh	at is a least natural number?	0
1518	Which pizzas are the most popularly ordered pizzas on Domino's menu?		100	w many calories does a Dominos za have?	0	
3272	6542	6543	How do you start a bakery?	ery? How can one start a bakery business?		
3362	6722	6723	Should I learn python or Java first?	If I had to choose between learning Java and Python, what should I choose to learn first?		
			QQP ↑		ParaNMT-50M↓	
Ref	ference	Transla	tion		Machine Translation	
so,	what's	half an I	hour?		half an hour won't kill you.	
we	ll, don't	worry.	i've taken out tons and tons of guys. lots of	guys.	don't worry, i've done it to dozens of men.	
it's	gonna l	be o	classic.		yeah, sure. it's gonna be great.	
gre	etings, a	all!			hello everyone!	
but	she doe	esn't hav	ve much of a case.		but as far as the case goes, she doesn't have much	h.
it w	vas good	l in spit	e of the taste.		despite the flavor, it felt good.	
		-	e paraphrase pairs from PARANMTe machine translation of the Czech s		, where each consists of an English refer	ence

question2

is_duplicate

question1

id

qid1

qid2

Relevant Descriptions:

- 1: A person parasails on the crest of a wave.
- 2: A windsurfer in the waves of the ocean.
- 3: A man rides large waves on a wind sail.
- 4: A man windsurfs in the ocean.
- 5: A man parasails in the waves.

Given one premise,

· Premise: There are two dogs running.

Annotators are required to write hypotheses of

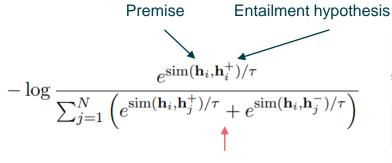
• Entailment: There are animals outdoors.

Contradiction: The pets are sitting on a couch.

Neutral: The dogs are catching a ball.

Flickr30k SNLI+MNLI

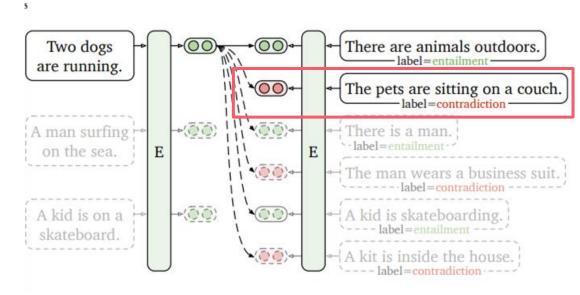
Supervised: NLI dataset



Contradiction hypothesis + in-batch negatives

Dataset	sample	full
SNLI+MNLI	1	
entailment + hard neg.	-	86.2
+ ANLI (52k)	-	85.0

(b) Supervised SimCSE



Outline

- Introduction
- 2 Method
- 5 Experiment
- 4 Conclusion

Dataset

- STS(2012-2016)
 - a set of semantic textual similarity datasets
- STS Benchmark
 - include text from image captions, news headlines and user forums.
 - include STS(2012-2016)
- SICK Relatedness
 - a dataset for compositional distributional semantics
- STS12 Semeval-2012 task 6: A pilot on semantic textual similarity
- STS13 SEM 2013 shared task: Semantic Textual Similarity
- STS14 SemEval-2014 task 10: Multilingual semantic textual similarity
- STS15 SemEval-2015 task 2: Semantic textual similarity, English, Spanish and pilot on interpretability
- STS16 SemEval-2016 task 1: Semantic textual similarity, monolingual and cross-lingual evaluation

Unsupervised Models

Model	STS12	STS13	STS14	STS15	STS16	STS-B	SICK-R	Avg.
	Unsupervised models							
GloVe embeddings (avg.)♣	55.14	70.66	59.73	68.25	63.66	58.02	53.76	61.32
BERT _{base} (first-last avg.)	39.70	59.38	49.67	66.03	66.19	53.87	62.06	56.70
BERT _{base} -flow	58.40	67.10	60.85	75.16	71.22	68.66	64.47	66.55
BERT _{base} -whitening	57.83	66.90	60.90	75.08	71.31	68.24	63.73	66.28
IS-BERT _{base}	56.77	69.24	61.21	75.23	70.16	69.21	64.25	66.58
CT-BERT _{base}	61.63	76.80	68.47	77.50	76.48	74.31	69.19	72.05
* SimCSE-BERT _{base}	68.40	82.41	74.38	80.91	78.56	76.85	72.23	76.25
RoBERTa _{base} (first-last avg.)	40.88	58.74	49.07	65.63	61.48	58.55	61.63	56.57
RoBERTa _{base} -whitening	46.99	63.24	57.23	71.36	68.99	61.36	62.91	61.73
DeCLUTR-RoBERTa _{base}	52.41	75.19	65.52	77.12	78.63	72.41	68.62	69.99
* SimCSE-RoBERTa _{base}	70.16	81.77	73.24	81.36	80.65	80.22	68.56	76.57
* SimCSE-RoBERTa _{large}	72.86	83.99	75.62	84.77	81.80	81.98	71.26	78.90

Supervised Models

Model	STS12	STS13	STS14	STS15	STS16	STS-B	SICK-R	Avg.
		Supe	rvised mod	lels				
InferSent-GloVe.	52.86	66.75	62.15	72.77	66.87	68.03	65.65	65.01
Universal Sentence Encoder♣	64.49	67.80	64.61	76.83	73.18	74.92	76.69	71.22
SBERT _{base} *	70.97	76.53	73.19	79.09	74.30	77.03	72.91	74.89
$SBERT_{base}$ -flow	69.78	77.27	74.35	82.01	77.46	79.12	76.21	76.60
SBERT _{base} -whitening	69.65	77.57	74.66	82.27	78.39	79.52	76.91	77.00
CT-SBERT _{base}	74.84	83.20	78.07	83.84	77.93	81.46	76.42	79.39
* SimCSE-BERT _{base}	75.30	84.67	80.19	85.40	80.82	84.25	80.39	81.57
SRoBERTa _{base} ♣	71.54	72.49	70.80	78.74	73.69	77.77	74.46	74.21
SRoBERTa _{base} -whitening	70.46	77.07	74.46	81.64	76.43	79.49	76.65	76.60
* SimCSE-RoBERTa _{base}	76.53	85.21	80.95	86.03	82.57	85.83	80.50	82.52
* SimCSE-RoBERTa _{large}	77.46	87.27	82.36	86.66	83.93	86.70	81.95	83.76

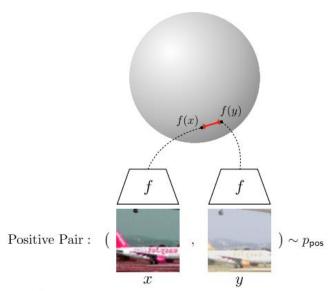
Ablation

Pooler	Unsup.	Sup.
[CLS]		
w/ MLP	81.7	86.2
w/ MLP (train)	82.5	85.8
w/o MLP	80.9	86.2
First-last avg.	81.2	86.1

Table 6: Ablation studies of different pooling methods in unsupervised and supervised SimCSE. [CLS] w/MLP (train): using MLP on [CLS] during training but removing it during testing. The results are based on the development set of STS-B using BERT_{base}.

Two key properties related to the contrastive learning

Wang and Isola (2020)



Alignment: Similar samples have similar features.

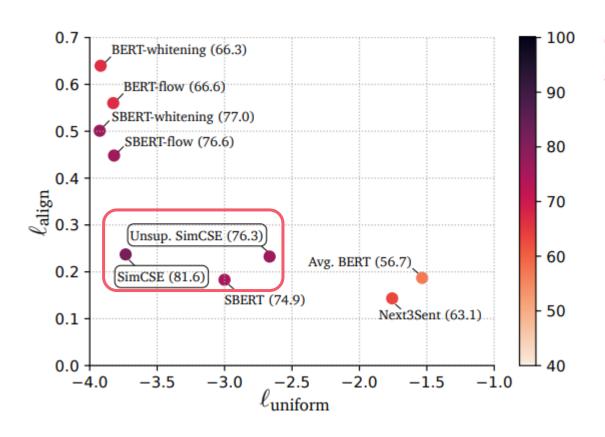
$$\ell_{\text{align}} \triangleq \underset{(x,x^+) \sim p_{\text{pos}}}{\mathbb{E}} \|f(x) - f(x^+)\|^2.$$
 encoder f is perfectly aligned if f(x) = f(y)

Uniformity: Preserve maximal information.

$$\ell_{\text{uniform}} \triangleq \log \quad \underset{x,y}{\mathbb{E}} e^{-2\|f(x) - f(y)\|^2},$$

encoder f is perfectly uniform if the distribution of f(x) for $x \sim Pdata$

ℓ align- ℓ uniform plot of models



Color of points and numbers in brackets represent average STS performance

Case Study

SBERTbase	Supervised SimCSE-BERT _{base}	
Query: A man riding a small boat in a harbor.	有一個男子在船上	
 #1 A group of men traveling over the ocean in a small boat. #2 Two men sit on the bow of a colorful boat. #3 A man wearing a life jacket is in a small boat on a lake. 	A man on a moored blue and white boat. A man is riding in a boat on the water. A man in a blue boat on the water.	
Query: A dog runs on the green grass near a wooden fence.	有一隻狗在草地上	
#1 A dog runs on the green grass near a grove of trees. #2 A brown and white dog runs through the green grass. #3 The dogs run in the green field.	The dog by the fence is running on the grass. Dog running through grass in fenced area. A dog runs on the green grass near a grove of trees.	

Outline

- Introduction
- 2 Method
- 5 Experiment
- 4 Conclusion

Conclusion

- This paper propose a simple contrastive learning framework that outperforms most existing models.
- Using supervised learning also makes the overall effect better.